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Received 20 July 1995

Abstract. We construct integrable maps for the Garnier and for the Neumann system. They
are related to the Toda hierarchy exactly in the same way as the Garnier and the Neumann
systems are related to theKdV hierarchy: as restricted flows. Here we give Lax representations
for these maps and prove that they are completely integrable.

1. Introduction

Numerical evidence indicates [1] that integrable numerical schemes which are one-parameter
families of integrable maps are superior with respect to ordinary discretizations or even
symplectic discretizations of integrable Hamiltonian systems. It is particularly evident
in the neighbourhood of a ‘heteroclinic point’ where subsequent magnifications of the
neighbourhood do not display any signs of numerical chaos.

To find an integrable map for a given integrable mechanical system is a formidable task
unless we have some additional structural information at our disposal. In this paper we show
that a particularly useful piece of information is the knowledge that the mechanical system
is a restricted flow of certain soliton hierarchy, as many integrable mechanical systems are
known to be [2–4]. Then by a suitable discretization of the underlying spectral problem
(see [5]) one obtains a lattice hierarchy of integrable equations. Restricted flows of this
lattice hierarchy usually appear to be the desired discretizations which in the continuous
limit go to the restricted flows of the continuous hierarchy.

In this paper we apply this procedure to find integrable maps for the first restricted flows
of the KdV hierarchy: the Garnier and the Neumann systems. As a suitable discretization
of the Schr̈odinger spectral problem we take the Toda spectral problem. By first studying
restricted flows of the Toda hierarchy we find integrable maps for the Garnier and for the
Neumann systems. In the following we shall call these maps the Garnier and the Neumann
map. These maps appear to be rational, forward and explicit so that they are convenient for
numerical implementation. They are also shown to go in the continuous limit to the Garnier
and to the Neumann system. For these maps we derive a Lax representation and integrals
of motion which are shown to be functionally independent and in involution. These maps
are completely integrable since they are symplectic and live onN -dimensional invariant
manifolds.

§ Present address: Dipartimento di Fisica, Universita di Roma P-zzale Aldo Moro 2, 00 185 Rome, Italy.
‖ Supported by NFR grant F-FU 8677.
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2. Restricted flows of theKdV hierarchy

For theKdV hierarchy of equations we denote

∂u/∂tm = Km[u] = B0δHm/δu = B1δHm−1/δu m = 0, 1, 2, . . . (2.1)

where vector fieldsKm[u] are differential functions ofu and its derivativesux, uxx, . . . . The
first vector fields are:K0 = 0,K1 = ux , K2 = 1

4uxxx + 3
2uux, . . . . TheKdV hierarchy is bi-

Hamiltonian: it can be expressed with the use of two Hamiltonian operatorsB0 = ∂ = ∂/∂x,
B1 = 1

4∂
3+u∂+ 1

2ux acting on the Euler–Lagrange derivatives of the Hamiltonian densities
Hm[u]. Equations (2.1) follow from the Schrödinger spectral problem

0 = (∂2 + u− λ)φ (2.2)

as the condition of compatibility with the auxiliary linear problem of the form∂φ/∂tm =
( 1

2Pm[u, λ] + Qm[u, λ])φ where Pm[u, λ], Qm[u, λ] are differential functions ofu and
polynomials in the spectral parameterλ. The spectral problem equation has two linearly
independent solutionsφ, ψ . They generate three linearly independent square eigenfunctions
91 = φ2, 92 = φψ , 93 = ψ2 satisfying the square eigenfunction relation (SER)

0 = [
1
4∂

3 + (u− λ)∂ + 1
2ux

]
9k = [B1 − λB0]9k k = 1, 2, 3 (2.3)

which is a differential consequence of (2.2).
Restricted flows of theKdV hierarchy are defined [2] as the set of 2N + 1 equations

0 = (∂2 + u− ξk)φk 0 = (∂2 + u− ξk)ψk k = 1, . . . , N (2.4a)

Km[u] = αB0(φψ) (for fixedm = 0, 1, 2, . . . ,andα = constant) (2.4b)

where (φψ) = (
∑N

k=1 φkψk) and φ = (φ1, . . . , φN)
t . They consists of 2N copies (2.4a)

of the spectral problem taken for fixed valuesξk of the spectral parameterλ and of the
restriction (2.4b). Notice that if one takes, on the right-hand side of (4.4b), a more general
linear combination(α(φφ) + β(φψ) + γ (ψψ)) of square eigenfunctions, then it can be
reduced toα(φψ) by taking suitable linear combinations ofφ andψ . Usually, one considers
the reductionφ = ψ which yieldsODEs having a transparent mechanical interpretation. Here
we holdφ andψ distinct because the Garnier map (3.1) found below does not admit this
symmetry reduction.

The first restricted flow(m = 0) in the vector notation is

0 = φxx + (u−4)φ 0 = ψxx + (u−4)ψ 4 = diag(ξ1, . . . , ξN) (2.5a)

0 = (φψ)x and hence (φψ) = c = constant. (2.5b)

In the reductionφ = ψ it is the Neumann system describing a particle moving on a sphere
of radiusc > 0 under the action of harmonic force.

The second restricted flow(m = 1)

0 = φxx + (u−4)φ 0 = ψxx + (u−4)ψ (2.6a)

ux = (φψ)x and hence u = (φψ)+ c (2.6b)

yields the two-field Garnier system

0 = φxx + (φψ)φ + (c −4)φ 0 = ψxx + (φψ)ψ + (c −4)ψ

originally considered by Garnier [6].
For these two restricted flows we find discrete integrable symplectic maps which

approximate them in the continuous limit. These maps are derived by considering the Toda
spectral problem which in the proper continuous limit goes to the Schrödinger spectral
problem.
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3. Garnier map

As the Garnier map we call the following set of 2N rational difference equations of second
order:

0 = φn−1 + [(φnψn)− a −4]φn + b

[(φn+1ψn)− 1]
φn+1 = ∂L

∂ψn
+ E−1 ∂L

∂ψn+1
(3.1a)

0 = ψn+1 + [(φnψn)− a −4]ψn + b

[(φnψn−1)− 1]
ψn−1 = ∂L

∂φn
+ E−1 ∂L

∂φn+1
(3.1b)

for the vector variablesφn+1, ψn+1 whereφn = (φn1, . . . , φnN)
t , ψn = (ψn1, . . . , ψnN)

t

anda, b are arbitrary constants. Here the symbolE means the shift operatorEφn = φn+1.
Equations (3.1) have the Lagrangian

L = (φnψn+1)+ 1
2(φnψn)

2 − (φn(a +4)ψn)+ b log[1 − (φn+1ψn)] (3.2)

where(φn(a +4)ψn) = ∑N
k=1 φnk(a +4k)ψnk.

In order to justify the name Garnier map given to equations (3.1) we have to show
that this map yields the Garnier system of equations in a certain continuous limit. For this
purpose we rescale variables

φ → 1φ ψ → 1ψ a +4 → 2 +124̃ and set b = −1 . (3.3)

By expanding (with respect to small parameter1) functions φn−1 = 1φ(x − 1) and
φn+1 = 1φ(x +1) in (3.1a) we obtain[
1φ −12φx + 1

21
3φxx + O(14)

] + [12(φψ)− 2 −124̃]1φ

+b[12(φψ)+13(φxψ)+O(14)−1]−1
[
1φ+12φx+ 1

21
3φxx+O(14)

]=0 .

The 1-order terms cancel and the12-order terms also cancel whenb = −1 since
[12(φψ)+13(φxψ)+ O(14)− 1]−1 = −[1 +12(φψ)+ O(13)]. At 13 we then obtain

φxx + 2(φψ)φ − 4̃ = 0 . (3.4a)

By a similar expansion of (3.1b) we get

ψxx + 2(φψ)ψ − 4̃ψ = 0 . (3.4b)

Equations (3.4) are the two-field Garnier system [6]. In the same continuous limit for the
Lagrangian (3.2) we recover at14 the LagrangianL = (φxψx)− (φψ)2 + (φ4̃ψ) modulo
an exact derivative. In order to prove complete integrability of the map (3.1) we introduce
canonical variables [7, 8] as

qn = φn pn = E−1 ∂L

∂φn+1
= b

[(φnψn−1)− 1]
ψn−1 (3.5)

rn = ψn sn = E−1 ∂L

∂ψn+1
= φn−1 (3.6)

whereqn, pn, rn, sn areN -vectors defined in the same way asφn, ψn in the formulae (3.1).
Equations (3.1) define a one step implicit map

0 = sn + [(qnrn)− a −4]qn + b

[(qn+1rn)− 1]
qn+1 (3.7a)

0 = rn+1 + [(qnrn)− a −4]rn + pn (3.7b)

sn+1 = qn pn+1 = b

[(qn+1rn)− 1]
rn+1 . (3.7c)
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It can easily be solved for the variables with indexn+1 by calculating(qn+1rn) from (3.7a).
The explicit form of this map is

rn+1 = −[(qnrn)− a −4]rn − pn sn+1 = qn (3.8a)

pn+1 = [(snrn)+ (qnrn)
2 − a(qnrn)−4(qnrn)+ b][((qnrn)− a −4)rn + pn] (3.8b)

qn+1 = sn + [(qnrn)− a −4]qn
[(snrn)+ (qnrn)2 − a(qnrn)−4(qnrn)+ b]

. (3.8c)

This map is symplectic since{qαn, pβn} = {rαn, sβn} = {qα(n+1), pβ(n+1)} = {rα(n+1),

sβ(n+1)} = δαβ . Its discrete Lax representation is the similarity transformation

0 = An−1(Dλ+ Un)− (Dλ+ Un)An (3.9)

with

(Dλ+ Un) =
(
λ− un −vn

1 0

)
An−1 =

( − ∑N
α=1

qnαpnα
λ−ξα vn−1 + ∑N

α=1
pnαsnα
λ−ξα

−1 − ∑N
α=1

qnαrnα
λ−ξα

∑N
α=1

rnαsnα
λ−ξα + (λ− un)+ (qnrn)

)
(3.10)

whereun = (qnrn)− a andvn−1 = (qnpn)− b. From TrAn−1 we getN integrals of motion

Jα = rαsα − qαpα α = 1, . . . , N (3.11a)

at the polesξα. They reflect the permutational symmetry with respect to the interchange of
φ andψ . Det An−1 givesN further integrals

Kα = − (ξα + a)qαpα + pαsα + [(qp)− b]qαrα +
N∑

γ=1,γ 6=α

1

ξα − ξγ
(pαrγ − pγ rα)

× (sαqγ − sγ qα)

≡ Pα + Lα (3.11b)

at the polesξα. We denotePα = −qα(ξα + a)pα + pαsα + [(qp)− b]qαrα. The indexn is
suppressed in all canonical variables. Integrals(Jα,Kα) are functionally independent and in
involution wheneverξα 6= ξβ for α 6= β. For proving functional independence of integrals
(3.11) we consider the Jacobian∂(J,K)/∂(r, s) with the parameters rescaled asξα → ρξα.
Whenρ → ∞ then the leading term is

Det
∂(J,K)

∂(r, s)
=

[ N∏
α=1

sαpα −
N∏
β=1

rβqβ

]
+ O(ρ−1) 6= 0

except, perhaps, some singular lower-dimensional manifolds in the phase space.
It is true for all values ofξα since this is an algebraic property of the Jacobian. The

proof of involutivity of integrals(Jα,Kα) is more complicated. One first shows that

{Lα,Lβ} = 0, {(qp), Lα} = 0

and then finds

{Kα,Kβ} = {Pα, Pβ} + {Pα, Lβ} + {Lα, Pβ} = 0 .
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4. Neumann map

Here we call the Neumann map the following set of 2N rational difference equations of
second order:

φn−1 + (un −4)φn + d(φn+1ψn)
−1φn+1 = 0 (4.1a)

ψn+1 + (un −4)ψn + d(φnψn−1)
−1ψn−1 = 0 (4.1b)

where(φnψn) = c = constant and the Lagrangian multipliercun = (φn4ψn)−(φn−1ψn)−d
is determined from this constraint(d = constant). These equations have the discrete Lax
representation (3.10) with the same(Dλ + Un) as for the Garnier map but with the Lax
matrix

An−1 =
( −vn−1

∑N
α=1

φnαψ(n−1)α

λ−ξα vn−1
∑N

α=1
φ(n−1)αψ(n−1)α

λ−ξα
− ∑N

α=1
φnαψnα
λ−ξα (φnψn)+ ∑N

α=1
φ(n−1)αψnα
λ−ξα

)
(4.2)

wherevn−1 = d(φnψn−1)
−1. It yields the following integrals of motion for (4.1):

Jα = φ(n−1)αψnα − vn−1φnαψ(n−1)α (4.3a)

Kα = vn−1

[ N∑
γ=1,γ 6=α

1

ξα − ξγ
(ψ(n−1)αψnγ − ψ(n−1)γ ψnα)(φ(n−1)αφnγ − φ(n−1)γ φnα)

+cφnαψ(n−1)α

]
α = 1, . . . , N . (4.3b)

They are not functionally independent:
∑N

α=1Kα = cd since we are dealing with a
constrained system.

In order to justify the name Neumann map we recover the Neumann system in the
continuous limit. Let us rescale4 → 2 + 124̃ and taked = c. Then by expanding
functionsφn−1 = 1φ(x −1) andφn+1 = 1φ(x +1) in the equation (4.1a) and by using
(φnψn) = c we obtain the following system ofODEs:

φxx − 4̃φ + ν1φ − 1

c
(φxψ)φx = 0 (4.4a)

ψxx − 4̃ψ + ν2ψ − 1

c
(ψxφ)ψx = 0 (4.4b)

where ν1 = 1
c
[(φ4̃ψ) − (ψφxx) + 1

c
(φxψ)

2] and ν2 = 1
c
[(φ4̃ψ) − (φψxx) + 1

c
(ψxφ)

2]
are determined from the constraint(φnψn) = c. Equations (4.4a, b) are the two-field
Neumann system. They admit the reductionφ = ψ which in turn, due to the constraint
(φψ) = c, implies (φxψ) = (ψxφ) = 0. In this reduction equations (4.4) become the
classical Neumann system

φxx − 4̃φ + νφ = 0 (4.5)

with ν = 1
c
[(φ4̃φ) − (φφxx)] = 1

c
[(φ4̃φ) − (φxφx)]. Also, integrals of motion admit a

continuous limit and in the reductionφ = ψ we recover the Uhlenbeck integrals

Kα = −cφ2
α +

N∑
γ=1,γ 6=α

1

ξα − ξγ
(φαφγx − φγ φαx)

2 .

For proving complete integrability of the map (4.1) we have to introduce suitable canonical
variables.

The Neumann map (4.1) is the stationarity condition for the discrete action

S =
∑
n∈Z

(φnψn+1)− (φn4ψn)+ d log(φn+1ψn)
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on the manifold(φnψn) = c. We shall choose the LagrangianLn = (φnψn+1)− (φn4ψn)+
d log(φn+1ψn) to define ‘unconstrained’ canonical variables as

qn = φn pn = E−1 ∂Ln

∂φn+1
= dψn−1

(φnψn−1)
ψn−1 = vn−1ψn−1 (4.6a)

rn = ψn sn = E−1 ∂Ln

∂ψn+1
= φn−1 . (4.6b)

The constraints then are(qnrn) = c and (pnqn) = d. On the manifold of constraints the
inverse of the map (4.6) isφn = qn, ψn = rn, φn−1 = sn, ψn−1 = cpn/(pnsn) and in terms
of (q, p, r, s) the Neumann map reads

rn+1 + (un −4)rn + pn = 0 sn+1 = qn (4.7a)

pn+1 = (d/αn)rn sn + (un −4)qn + (d/αn)qn+1 = 0 αn = qn+1rn . (4.7b)

The constraint(qn+1rn+1) = c determines(dc/αn) = ([sn+ (un−4)qn], [pn+ (un−4)rn])
while (pn+1qn+1) = d determinescun = (rn4qn)− (rnsn)− d. The symbol([·], [·]) reads
here as a scalar product. So the explicit and forward form of the Neumann map is

qn+1 = − c[sn + (un −4)qn]

([sn + (un −4)qn], [pn + (un −4)rn])
rn+1 = −[pn + (un −4)rn]

(4.8a)

pn+1 = c−1([sn + (un −4)qn], [pn + (un −4)rn])rn sn+1 = qn . (4.8b)

It can be checked that (4.8) is a Poisson map with respect to the Dirac bracket on the
manifold of the constraints:(pnqn) = d, (qnrn) = c. Now the complete integrability
follows from the existence of integrals (4.3) rewritten in terms of canonical variables as

Jj = rj sj − qjpj j = 1, . . . , N (4.9a)

Kj =
N∑

k=1,k 6=j

1

ξj − ξk
(pj rk − pkrj )(sj qk − skqj )− cqjpj . (4.9b)

Together with the function(qp) = ∑N
j=1 qjpj they form a complete set of 2N functionally

independent integrals in involution and the map (4.8) is completely integrable in the
‘unconstrained’ space of variables(q, p, r, s) [9]. Clearly it remains integrable on the
manifold of constraints(qnrn) = c, (pnqn) = d which is preserved by (4.8). Incidentally,
a similar set of involutive functions appeared in connection with the second restricted flow
of the AKNS hierarchy [10].

5. The Toda hierarchy

The Garnier and Neumann maps has been derived as restricted flows of the Toda hierarchy.
But it is more convenient to think of them as stationary flows of the Toda hierarchy with
sources because as such they inherit their Lax representation.

Let us fix notation and consider the Toda spectral problem

(L − λ)φ = [E−1 + (u− λ)I + vE]φ = 0 (5.1a)

whereu = un, v = vn are the Toda fields,φ = φn are eigenfunctions,λ is the spectral
parameter (independent ofn), I = identity andE is the shift operatorEφn = φn+1 which
acts on all functions to the right which depend on the indexn. Index n is in the sequel
reserved for the lattice components and we will omit it unless it is shifted.
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The adjoint Toda spectral problem reads

[E + (u− λ)I + E−1v]ψ = 0 (5.1b)

where the adjoint is taken with respect to the pairing〈φ,ψ〉 = ∑∞
n=−∞ φnψn.

The Toda hierarchy arises as the condition of compatibility with the auxiliary linear
problem written as

φt = v(PE −Q)φ . (5.2)

A sufficient condition for the existence of common solutionsφ to (5.1a) and (5.2) is(
u

v
t

)
=

(
vE − E−1v (u− λ)(I − E−1)v

v(E − I)(u− λ) v(E − E−1)v

)(
P

Q

)
= (B1 − λB0)

(
P

Q

)
(5.3)

where B0 and B1 denote 2× 2 Hamiltonian operators which we can identify atλ
and λ0 = 1. The usual Toda hierarchy follows from the polynomial assumption for
P(λ) = P(m) = ∑m

k=0 λ
kPm−k andQ(λ) = Q(m) = ∑m

k=0 λ
kQm−k. The requirement of

λ independence of vector fields (5.3) determines allPr andQr , r = 0, 1, 2, . . . from the
recursion

0 = (vE − E−1v)Pm + u(I − E−1)vQm − (I − E−1)vQm+1 (5.4a)

0 = v(E − I)uPm + v(E − E−1)vQm − v(E − I)Pm+1 . (5.4b)

The first of these are

P0 = 1 P1 = un P2 = u2
n + vn + vn−1

P3 = un(u
2
n + vn + vn−1)+ vn(un + un+1)+ vn−1(un + un−1), . . .

(5.5a)

and

Q0 = 0 Q1 = 1 Q2 = un + un+1

Q3 = u2
n+1 + unun+1 + u2

n + vn+1 + vn + vn−1, . . . .
(5.5b)

The corresponding vector fields read

K0 = B0

(
P0

Q0

)
=

(
0
0

)
K1 =

(
vn − vn−1

vn(un+1 − un)

)
K2 =

(
vn(un + un+1)− vn−1(un + un−1)

vn(u
2
n+1 − u2

n + vn+1 − vn−1)

)
. . . .

(5.6)

By the square eigenfunction relation (SER) we mean the equation(
0
0

)
=

(
vE − E−1v (u− λ)(I − E−1)v

v(E − I)(u− λ) v(E − E−1)v

)(
φψ

(Eφ)ψ

)
= (B1 − λB0)

(
φψ

(Eφ)ψ

)
(5.7)

which is a consequence of the spectral problem (5.1a) and of its adjoint (5.1b).

6. Toda hierarchy with sources

The Toda hierarchy with sources follows from the rational ansatz for

P(λ) = P(m) + Prat =
m∑
k=0

λkPm−k +
N∑
r=1

(λ− ξr)
−1p(r) (6.1a)

Q(λ) = Q(m) +Qrat =
m∑
k=0

λkQm−k +
N∑
r=1

(λ− ξr)
−1q(r) . (6.1b)
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Then, due to the identity

[B1 − λB0](λ− ξ)−1q = [B1 − (λ− ξ)B0 − ξB0](λ− ξ)−1q

= − B0q + [B1 − ξB0](λ− ξ)−1q

equation (5.3) splits into the equation(
u

v

)
t

= (B1 − λB0)

(
P(m)
Q(m)

)
− B0

( ∑N
r=1p

(r)∑N
r=1 q

(r)

)
(6.2)

which we obtain as the entire part and into the set of square eigenfunction relations

(B1 − ξrB0)

(
p(r)

q(r)

)
= 0 r = 1, . . . , N (6.3)

at (λ − ξr)
−1. The right-hand side of equation (6.2) consists of the standard recursion

relation at powersλ, . . . , λm+1 which determines allPm−k, Qm−k, k = 0, . . . , m and of the
dynamical vector field for themth Toda flow which is supplemented with the source term
depending onp(r), q(r).

The remainingn equations can be interpreted as constraints which acquire the meaning
of the square eigenfunction relations if we setp(r)n = φ(r)n ψ

(r)
n and q(r)n = φ

(r)

n+1ψ
(r)
n .

A matrix form of Toda hierarchy arises when we introduce the column vector notation
8 = 8n = (φn, φn+1)

t . We can rewrite then the linear problem equations (5.1a) and (5.2)
as

E−18 =
(
λ− u −v

1 0

)
8 = (Dλ+ U)8 (6.4a)

8t =
( −vQ vP

−(EP) −E[vQ+ (u− λ)P ]

)
8 = A8 (6.4b)

and the compatibility condition reads

Ut = (Dλ+ U)t = (E−1A)(Dλ+ U)− (Dλ+ U)A . (6.5)

7. Restricted flows of Toda hierarchy

A restricted flow of the Toda hierarchy (5.3)(P = P(m),Q = Q(m)) is a set of 2N + 2
difference equations. It consists ofN copies (7.1a) of the spectral problem equations, taken
for fixed valuesξj of the spectral parameterλ, of N copies of its adjoint (7.1b) and of the
restriction (7.1c) of themth vector field of the Toda hierarchy:

[E−1 + (u− ξα)I + vE]φα = 0 (7.1a)

[E + (u− ξα)I + E−1v]ψα = 0 α = 1, . . . , N (7.1b)

0 = B1

(
Pm
Qm

)
− B0

( ∑N
α=1 φαψα∑N

α=1(Eφα)ψα

)
= B0

(
Pm+1

Qm+1

)
− B0

(
(φψ)

((Eφ)ψ)

)
. (7.1c)

Here we use the shorthand scalar product notation(φψ) = ∑N
α=1 φαψα, ((Eφ)ψ) =∑N

α=1(Eφα)ψα. Equations (7.1) define a map for the variablesφα, ψα, α = 1, . . . , N ,
which is expected to be integrable since equations (7.1) are invariant with respect to the
action of all flows of the Toda hierarchy. We recall that the functionsφα, ψα have a dumb
index n which is usually suppressed in our notation. Equations (7.1a, b) are invariant by
the definition of the hierarchy while (7.1c) can be seen as a stationarity condition

0 = B0

(
δHm+1/δu− ∑N

r=1 δξr/δu

δHm+1/δv − ∑N
r=1 δξr/δv

)
(7.2)



Maps for Garnier and Newmann systems 1123

of a flow (also belonging to the hierarchy) which involves the square eigenfunctions and
the HamiltonianHm+1. Themth restricted flow of the Toda hierarchy can now be seen as
themth stationary flow of the Toda hierarchy with sources. It inherits from (6.5) the Lax
representation

0 = (E−1A(m))(Dλ+ U)− (Dλ+ U)A(m) (7.3)

which becomes a similarity transformation ofA(m). Restricted flows are numbered by
m = −1, 0, 1, 2, . . . .

Them = 0 restriction for the Toda hierarchy reads

0 = B0

(
P1 − (φψ)

P0 − ((Eφ)ψ)

)
=

(
0 (I − E−1)v

v(E − I) 0

)(
u+ a − (φψ)

1 + bv−1 − ((Eφ)ψ)

)
(7.4)

since (u + a, 1 + bv−1)t belongs to the kernel ofB0. It yields un = (φnψn) − a and
vn = b[(φn+1ψn)−1]−1 wherea, b are constants of integration. The replicas of the spectral
problem (5.1) become the Garnier map (3.1).

By specifyingQ,P in (6.4) asQ = ∑N
α=1

q(α)

λ−ξα , P = 1 + ∑N
α=1

p(α)

λ−ξα with p(α)n =
φnαψnα, q(α)n = φ(n+1)αψnα we get the following Lax matrices for the Garnier map:

(Dλ+ Un) =
(
λ− un −vn

1 0

)
and

An−1 =
( −vn−1Qn−1 vn−1Pn−1

−Pn −[vnQn + (un − λ)Pn]

)
=

( −vn−1
∑N

α=1
φnαψ(n−1)α

λ−ξα vn−1

(
1 + ∑N

α=1
φ(n−1)αψ(n−1)α

λ−ξα

)
−1 − ∑N

α=1
φnαψnα
λ−ξα −

[
vn−1

∑N
α=1

φ(n+1)αψnα
λ−ξα + (un − λ)

(
1 + ∑N

α=1
φnαψnα
λ−ξα

)] )
.

By using the spectral problem (3.1a), in the matrix element (22), the spectral problem
(7.1a) and by substituting definitions (3.5), (3.6) we get the Lax matrix (3.10). It is not
difficult to check that the discrete Lax equation (3.9) is now satisfied due to equations (3.7)
when un and vn are substituted from the restrictionsun = (φnψn) − a = (qnrn) − a and
vn−1 = b[(φn+1ψn)− 1]−1(qnpn)− b.

Them = −1 restriction

0 = B0

(
(φψ)

((Eφ)ψ)

)
=

(
0 (I − E−1)v

v(E − I) 0

)(
(φψ)

((Eφ)ψ)

)
(7.5)

yields (φnψn) = c, vn = d(φn+1ψn)
−1 where c, d are constants of integration and the

restricted flow equations become the discrete Neumann map (4.1). By specifyingQ,P in
(6.4) asQ = ∑N

α=1
q(α)

λ−ξα , P = ∑N
α=1

p(α)

λ−ξα with p(α)n = φnαψnα, q(α)n = φ(n+1)αψnα we get
the Lax matrix (4.2) for the Neumann map (4.1).

8. Conclusions

We have given here only the first two maps following from the Toda hierarchy. One expects
that the next restricted flows of the Toda hierarchy(m = 1, 2, . . .) should approximate the
corresponding restricted flows(m = 2, 3, . . .) of the KdV hierarchy. It would be particularly
interesting to derive an integrable map approximating the integrable case of the Henon–
Heiles system which is embedded into them = 3 stationaryKdV flow [3, 11].

We have to mention here that different integrable maps are presently available in the
literature which are called Neumann and Garnier maps. Two of these have been derived



1124 O Ragnisco and S Rauch-Wojciechowski

by one of the authors [5, 13]. They have been derived as restricted flows of an alternative
version of the Toda hierarchy associated with the self-adjoint spectral problem. An integrable
discretization of the Neumann system has been presented by Moser and Veselov [12], while
recently Suris [14] has presented yet another integrable discretization of the Garnier system.
The models studied in [13, 14] are endowed with Lax representation andR-matrix structure.

Further properties of our models, likeR-matrix formulation, bi-Hamiltonian structure
and separation of variables are under study and the results will be published elsewhere.
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