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Abstract. We construct integrable maps for the Garnier and for the Neumann system. They
are related to the Toda hierarchy exactly in the same way as the Garnier and the Neumann
systems are related to thav hierarchy: as restricted flows. Here we give Lax representations
for these maps and prove that they are completely integrable.

1. Introduction

Numerical evidence indicates [1] that integrable numerical schemes which are one-parameter
families of integrable maps are superior with respect to ordinary discretizations or even
symplectic discretizations of integrable Hamiltonian systems. It is particularly evident
in the neighbourhood of a ‘heteroclinic point’ where subsequent magnifications of the
neighbourhood do not display any signs of numerical chaos.

To find an integrable map for a given integrable mechanical system is a formidable task
unless we have some additional structural information at our disposal. In this paper we show
that a particularly useful piece of information is the knowledge that the mechanical system
is a restricted flow of certain soliton hierarchy, as many integrable mechanical systems are
known to be [2-4]. Then by a suitable discretization of the underlying spectral problem
(see [5]) one obtains a lattice hierarchy of integrable equations. Restricted flows of this
lattice hierarchy usually appear to be the desired discretizations which in the continuous
limit go to the restricted flows of the continuous hierarchy.

In this paper we apply this procedure to find integrable maps for the first restricted flows
of the kdv hierarchy: the Garnier and the Neumann systems. As a suitable discretization
of the Schédinger spectral problem we take the Toda spectral problem. By first studying
restricted flows of the Toda hierarchy we find integrable maps for the Garnier and for the
Neumann systems. In the following we shall call these maps the Garnier and the Neumann
map. These maps appear to be rational, forward and explicit so that they are convenient for
numerical implementation. They are also shown to go in the continuous limit to the Garnier
and to the Neumann system. For these maps we derive a Lax representation and integrals
of motion which are shown to be functionally independent and in involution. These maps
are completely integrable since they are symplectic and livevedimensional invariant
manifolds.

§ Present address: Dipartimento di Fisica, Universita di Roma P-zzale Aldo Moro 2, 00 185 Rome, ltaly.
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2. Restricted flows of thekdv hierarchy

For thekdv hierarchy of equations we denote

du/dty, = K, [u]l = BodH,,/8u = B16H,,_1/8u m=20,12 ... (2.2)
where vector field%,,[u] are differential functions of and its derivatives,, u,,,.... The
first vector fields areXo = 0, K1 = u,, Kp = 3uty.c + uliy, ... Thekdv hierarchy is bi-

Hamiltonian: it can be expressed with the use of two Hamiltonian operBtpeso = 9/dx,
B; = 21183+u8 + %ux acting on the Euler—Lagrange derivatives of the Hamiltonian densities
H,,[u]. Equations (2.1) follow from the Scbdinger spectral problem

0=(3%+u—A¢ (2.2)

as the condition of compatibility with the auxiliary linear problem of the faigy oz, =
(%Pm[u,k] + Qunlu, X])¢ where P,[u, ], O.[u,r] are differential functions of and
polynomials in the spectral parameter The spectral problem equation has two linearly
independent solutiong, . They generate three linearly independent square eigenfunctions
Uy = ¢?, W, = ¢y, W3 = Y2 satisfying the square eigenfunction relati®eg)

0=[30°+ (u— 213+ Ju,] W = [B1 — ABo] ¥ k=123 (2.3

which is a differential consequence of (2.2).
Restricted flows of th&dv hierarchy are defined [2] as the set af 2- 1 equations

0= (0%4u — &)x 0=(0%+u — &)Yy k=1...,N (2.4a)
K, [u] = aBo(¢yr) (for fixedm = 0,1, 2, ..., anda = constant (2.4b)

where (¢py) = (Z,f’:lmwk) and¢ = (¢1,...,¢n)". They consists of X copies (2.4)
of the spectral problem taken for fixed valugsof the spectral parametér and of the
restriction (2.4). Notice that if one takes, on the right-hand side of I¢}.4. more general
linear combination(a(¢¢) + B(d¥) + y (¥r)) of square eigenfunctions, then it can be
reduced tax(¢y) by taking suitable linear combinations ¢fandv,. Usually, one considers
the reductionp =  which yieldsoDEs having a transparent mechanical interpretation. Here
we hold¢ and v distinct because the Garnier map (3.1) found below does not admit this
symmetry reduction.

The first restricted flowm = 0) in the vector notation is

O=¢x+u— B) O=vx +(u—E)Y E =diagé&y, ..., &n) (2.59)
0= (oY), and hence (¢¥) = ¢ = constant (2.%0)
In the reductionp = v it is the Neumann system describing a particle moving on a sphere
of radiusc > 0 under the action of harmonic force.
The second restricted flogwn = 1)
O=¢, +u— 8 O=vYu+ -8y (26&)
u, = (p¥), and hence u = (¢py) + ¢ (2.6)
yields the two-field Garnier system

0=¢ux + (@V)9 + (c — E)¢ 0=vue + @YY + (c — E)Y

originally considered by Garnier [6].

For these two restricted flows we find discrete integrable symplectic maps which
approximate them in the continuous limit. These maps are derived by considering the Toda
spectral problem which in the proper continuous limit goes to the &iihger spectral
problem.
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3. Garnier map

As the Garnier map we call the following set av2ational difference equations of second
order:

b oL oL
0=¢, W) —a—8lgp+ - pp1=-—— + EL 3.1a
Pn_1+ [(¢ V) —a ](,b + [(¢,1+1¢n) _ 1]¢ +1 oL/ + 0Ynq1 ( )

b oL oL
0=, wWn) —a—CBlY, + ———— 1 = E™ 3.1
Yur1 + [(¢ Yn) —a ]I// + [(d)nl/fnfl) _ ]_]w ! AP, + 0Pni1 ( )

for the vector variable®, .1, V,+1 whereg, = (Pu1, .- .» Gun)’s Vo = (Wuty oo, Yan)'
anda, b are arbitrary constants. Here the symi#®imeans the shift operatdf ¢, = ¢, 1.
Equations (3.1) have the Lagrangian

L = (¢pu¥ns1) + 5@u¥)® — (du(a + E)Y) + b10g[L — (Bys1¥)] (3.2)

where (@, (a + E)v,) = 3 duia + E0) .

In order to justify the name Garnier map given to equations (3.1) we have to show
that this map yields the Garnier system of equations in a certain continuous limit. For this
purpose we rescale variables

¢ —> A v — AY a+E8— 2+ A8 and set b = —1. (3.3)

By expanding (with respect to small parametg) functions ¢, 1 = A¢(x — A) and
Pnt1 = A¢p(x + A) in (3.1a) we obtain

[Ad — A%p, + 1A%, + O(AY] + [A%(PY) — 2 — A2E] A
+O[A% (@) + A3 (pe ) +O(AN — 1] H[Ap+ A%h, + S A%, +O(AH) ] =0.

The A-order terms cancel and thaZ-order terms also cancel wheln = —1 since
[A%(py) + A3(p ) + O(A%) — 1]71 = —[1 4 A%(¢pyr) + O(A®)]. At A% we then obtain
b + 2(p¥)p — E = 0. (3.42)
By a similar expansion of (3d) we get
Vax + 29Y) Y — By = 0. (3.40)

Equations (3.4) are the two-field Garnier system [6]. In the same continuous limit for the
Lagrangian (3.2) we recover at* the Lagrangiarl = (¢ v) — (¢¥)% + (¢ E) modulo

an exact derivative. In order to prove complete integrability of the map (3.1) we introduce
canonical variables [7, 8] as

_1 OL b
n — ®n n — = n— 3.5
=0 P s [Gunn) — 117" (2:5)
_ T
rn =Y, s, =F S =,_1 (3.6)

whereg,,, p., r., s, are N-vectors defined in the same way@s ¢, in the formulae (3.1).
Equations (3.1) define a one step implicit map

b
0= Sn + [(Qnrn) —a— E]qn + Y E— [ (37&)
[(QH+1rn) - 1] i
O=rn+1+[(ann) —a-— E]r71+pn (37b)
b
Sn+1 = (qn Pn+1 = nyl- (370)

[(Gn41ra) — 1]
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It can easily be solved for the variables with index 1 by calculating(g,,1r,,) from (3.7a).
The explicit form of this map is

Tnp1 = —[(qurn) —a — Elr, — pn Sn+1 = qn (3.89)

Pn+1 = [(Snrn) + (Qnrn)z - a(ann) - E(Qnrn) + b][((Qnrn) —a— E)rn + pn] (38b)
Sn + [(Qnrn) —a— Dl% ) (3&)

[(Snrn) + (Qnrn)z - a(Qnrn) - D(Qnrn) + b]

This map is SympIeCtiC Sinc@an’ pﬁn} = {rrxm S,Bn} = {%x(lH—l)a pﬂ(n+l)} = {ra(n-&-l)’
Spm+1)} = Sap. Its discrete Lax representation is the similarity transformation

qn+1 =

0=A,_1(DA+U,) — (DA + UyA, (39)
with
A—U, —v,
(DL +U,) = ( 1 0 )
A= < _Zg:;% N Unil—i_z‘]’v:l%zx )
-1- Za:l % Za:l % + ()" - un) + (ann)

whereu,, = (g,r,) —a andv,_1 = (g, p,) —b. From TrA,,_1 we getN integrals of motion

(3.10)

Ja:rasa_Qapa a=1...,N (311&)

at the polest,. They reflect the permutational symmetry with respect to the interchange of
¢ andy. Det A, 3 gives N further integrals

al 1
Ky = — (E« + @)quPa + Pasa + [(qP) — b)gara + ) (Paly = PyTa)
y=1yta Sa 5
X (Saqy — Syqa)
— P 4L, (3.11)

at the poles,. We denoteP, = —q,(&x + a) po + PuSe + [(gp) — blqars- The indexn is
suppressed in all canonical variables. Integtdls K,,) are functionally independent and in
involution wheneveg, # & for o # B. For proving functional independence of integrals
(3.11) we consider the Jacobian/, K)/d(r, s) with the parameters rescaled@s— pé&,.
When p — oo then the leading term is

3(J, K N il
el 8~ [Toum~ [T rvas] + 007 # 0
(r. s) a=1 p=1

except, perhaps, some singular lower-dimensional manifolds in the phase space.
It is true for all values of, since this is an algebraic property of the Jacobian. The
proof of involutivity of integrals(J,, K,,) is more complicated. One first shows that

{La, Lg} =0,{(gp), La} =0
and then finds

{Ko, Kg} = {Po, Pg} + {Po, Lg} + {La, Pg} = 0.
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4. Neumann map

Here we call the Neumann map the following set @f 2ational difference equations of
second order:

¢n—l + (un - E)¢n + d(qbn-‘rﬂﬂn)ilqbn-&-l =0 (4]&)
Ynt1 + (n — E)Yu +d(@u¥n1) " Yu1=0 (4.10)
where(¢, ¥,,) = ¢ = constant and the Lagrangian multiplier,, = (¢, E¥,) — ($p_1¥,) —d
is determined from this constraiii@ = constant. These equations have the discrete Lax

representation (3.10) with the sam®a + U,) as for the Garnier map but with the Lax
matrix

N Gwe¥u-1a N ¢>(n Do Yn—1a
Uy v, Hale -l
Art= < 1 ZN mé,,fa 1 2 N Asz“lwm ) #42)
S e (Gt ST
wherev,_1 = d(¢,¥,—1) L. It yields the following integrals of motlon for (4.1):
Jw = ¢(n—1)a1//not - Un—1¢na w(n—l)a (433)
al 1
K, = vnl|: Z £, —& (w(n 1)(11”:11/ 1p(nfl)ywnot)((p(nfl)cz(ﬁny - ¢(nfl)y¢na)
y=Ly#a °¢ 4
+C¢naw'(n—l)oti| a=1...,N. (43))

They are not functionally independentzfx\’=1 K, = cd since we are dealing with a
constrained system.

In order to justify the name Neumann map we recover the Neumann system in the
continuous limit. Let us rescal& — 2+ A?Z and taked = ¢. Then by expanding
functionsg,—1 = A¢(x — A) and¢,+1 = A¢(x + A) in the equation (44) and by using
(¢, ¥,) = ¢ we obtain the following system afDES:

~ 1
¢xx - E¢ + Vl¢ - E(¢x¢)¢x =0 (4‘h)

~ 1
Ve = BY + vz — —(Yxd)Yr = 0 (4.%)

wherevy = Z[(¢EY) — (Ygu) + [ (@)% and vz = [GEY) — (V) + ; (V9]
are determined from the constraitp,v,) = c¢. Equations (4.4, b are the two-field
Neumann system. They admit the reductipr=  which in turn, due to the constraint
(p¥) = ¢, implies (¢, ) = (Y ¢) = 0. In this reduction equations (4.4) become the
classical Neumann system

with v = [(@EP) — (p¢.r)] = L[(pE¢) — (¢x¢.)]. Also, integrals of motion admit a
continuous limit and in the reductiop = v we recover the Uhlenbeck integrals
N

Ky=—col+ Y.

y<Tysa S — &y
For proving complete integrability of the map (4.1) we have to introduce suitable canonical
variables.
The Neumann map (4.1) is the stationarity condition for the discrete action

S = Z(%%H) — (@uEVYn) + d109(Pn+1Yn)

neZ

(¢tx¢yx - ¢y¢ax)2 -
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on the manifold(¢, ) = c. We shall choose the Lagrangién = (¢, ¥.11) — (¢, Ev¥,) +
d log(¢,+1¥,) to define ‘unconstrained’ canonical variables as

_E_]_ aLn _ dwn—l

hn = Qn n = = n—1=— Up— n— 4&

Bt P T G T (0
_ _ g1 0w _

rn =Y shn=FE s Pn_1. (4.60)

The constraints then ang,r,) = ¢ and (p,g,) = d. On the manifold of constraints the
inverse of the map (4.6) 8, = g,, ¥ = 1, Pn_1 = Su, Y1 = cp,/(pns,) and in terms
of (¢, p, r,s) the Neumann map reads
I'n+1 + (un - E)rn + Pn = 0 Sn+1 = qn (47a)
Pn+1 = (d/an)rn Sy + (”n - E)qn + (d/an)chHL =0 Qp = f4n41'n - (47b)
The constraintg,1r,+1) = ¢ determinegdc/a,) = (s, + W, — E)qul, [pn + U, — E)ry])
while (p,11g,+1) = d determinesu,, = (r, 2q,) — (rys,) —d. The symbol([-],[-]) reads
here as a scalar product. So the explicit and forward form of the Neumann map is
_ C[Sn + (un - E)QH]

([Sn + (un - E)QV!]v [pn + (Mn - :)rn])

qn+1 = I'n+1 = _[pn + (un - E)rn]
(4.89)
Pn+1 = C_l([sn + p — B)qul, [pn + Wn — E)rury Sn+1 = 4qn - (4.80)

It can be checked that (4.8) is a Poisson map with respect to the Dirac bracket on the
manifold of the constraintsi(p,q,) = d, (g.r,) = ¢. Now the complete integrability
follows from the existence of integrals (4.3) rewritten in terms of canonical variables as

Jj =rjsj —q;p; j=1...,N (4.9)
N
K; = Z E—¢ (pjre — parj)(Sjqx — Skqj) — ¢q;p; - (4.9)
k=1 k) 5] — Sk

Together with the functiorigp) = Z,{V:l gjp; they form a complete set ofA2 functionally
independent integrals in involution and the map (4.8) is completely integrable in the
‘unconstrained’ space of variablgg, p,r,s) [9]. Clearly it remains integrable on the
manifold of constraintsg,r,) = ¢, (p.q,) = d which is preserved by (4.8). Incidentally,

a similar set of involutive functions appeared in connection with the second restricted flow
of the AKNS hierarchy [10].

5. The Toda hierarchy

The Garnier and Neumann maps has been derived as restricted flows of the Toda hierarchy.
But it is more convenient to think of them as stationary flows of the Toda hierarchy with
sources because as such they inherit their Lax representation.

Let us fix notation and consider the Toda spectral problem

L-MNp=[E +wu—-1I+vE]$p=0 (5.13)

whereu = u,, v = v, are the Toda fieldsp = ¢, are eigenfunctionsi is the spectral
parameter (independent oj, I = identity andE is the shift operatoE ¢, = ¢,1 which
acts on all functions to the right which depend on the indexindexn is in the sequel
reserved for the lattice components and we will omit it unless it is shifted.
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The adjoint Toda spectral problem reads
[E4+@wu—-MNI+E Wy =0 (5.1b)

where the adjoint is taken with respect to the pairiggy) = > oo ¢u¥u.
The Toda hierarchy arises as the condition of compatibility with the auxiliary linear
problem written as

¢ =v(PE - Q). (5.2)
A sufficient condition for the existence of common solutigho (5.1a) and (5.2) is

u\ vE—E u— (I — E Yy P\ P
(v’) B (v(E—I)(u — ) vW(E — E Y ><Q> = (Bl—/\Bo)<Q> (5.3)

where By and B; denote 2x 2 Hamiltonian operators which we can identify at
and A° = 1. The usual Toda hierarchy follows from the polynomial assumption for
PA) = Poy = Y o MPuy @and Q1) = Q) = Y 1o A Qmi. The requirement of

A independence of vector fields (5.3) determinesRalland Q,, r = 0,1, 2, ... from the
recursion

0=WE-E WP, +uld —E Q- T —E HvQun (5.49)
0=v(E —DuP, +v(E—E Y0, —v(E—-I)P,.1. (5.4b)
The first of these are
Po=1 Py=u, Py =u?4 v, +v,_
0 , 1 2 1 (558.)
P3 = un(un + v, + Unfl) + vy (un + un+1) + Unfl(un + un71)7 ce
and
Q00=0 0:1=1 Q2 =u, +u,
0 , 1 , 2 +1 (55))
Oz =up g +Upltpyr +u, + Vg1 + v+ 051, ...
The corresponding vector fields read
PO 0 Up — Up—-1
fo=n( )=o) x=( )
0 U, (Upy1 — Uy
Qo (Un41 ) (5.6)

K> = <vn(un + MnJrl) - Unfl(un + Mnl))
2= 2 2 e
U (g, g — Uy + Vp1 — Vy—1)

By the square eigenfunction relatioseQ we mean the equation

O\_( vE-E*% @-DI-EW\( ¥ \_ 5 _ 5, ¢V
0)\vE-Du-» wE-EYw J\(Epy )T BB (Eg)y

(5.7)
which is a consequence of the spectral problema)sahd of its adjoint (5.4).
6. Toda hierarchy with sources
The Toda hierarchy with sources follows from the rational ansatz for
m N
PO) = Py + Prar = Y _ NPy +Y (A —£)""p" (6.1a)
k=0 r=1

m N
Q) = Qumy + Qrar = Y M Qui+ Yy (A —E)"¢". (6.10)
k=0

r=1
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Then, due to the identity

[Bi — ABo](h — §)"'q = [BL— (A —§)Bo — £ Bl . — §) ¢
= — Bog +[B1— B, —§)'q
equation (5.3) splits into the equation

w\ _ g _ Puy\ o (et )
o) (G

which we obtain as the entire part and into the set of square eigenfunction relations
p
(B]_—E,Bo) C](r) =0 r = 1,...,N (63)

at (L, — &)~1. The right-hand side of equation (6.2) consists of the standard recursion
relation at powers., ..., A"+ which determines alP,,_x, Q,—_, k =0, ..., m and of the
dynamical vector field for the:th Toda flow which is supplemented with the source term
depending orp®, ¢®.

The remaining: equations can be interpreted as constraints which acquire the meaning
of the square eigenfunction relations if we séf’ = ¢y and ¢ = ¢!} ,y.
A matrix form of Toda hierarchy arises when we introduce the column vector notation
d = d, = (¢, Pny1)’. We can rewrite then the linear problem equationsgbdnd (5.2)
as

E ' = (AIL‘ _0”><1>= (DX + U)® (6.4a)
. —vQ vP .
¢’_<—{EP) —EhQ+%u—Aﬂﬂ)®'_A® (6.40)
and the compatibility condition reads
U, = (Dr+U), = (E"*A)(DA+U) — (DX + U)A. (6.5)

7. Restricted flows of Toda hierarchy

A restricted flow of the Toda hierarchy (5.8P = Py, O = Q) iS a set of &V + 2
difference equations. It consists &fcopies (7.4) of the spectral problem equations, taken
for fixed valuest; of the spectral parameter, of N copies of its adjoint (74) and of the
restriction (7.t) of the mth vector field of the Toda hierarchy:

[E™'+ u—£)I +vE]$p, =0 (7.1a)
[E+ (u—&)I+E ]y, =0 a=1...,N (7.1b)
o Pn) >y GaVa )_ (P,M)_ < @Y) )

0‘31<Qm> B°<25:1(E¢>a)wa =B .. ) 7 B\ o)y ) (7.1c)

Here we use the shorthand scalar product notatipir) = Zgzlqsa%, (Ep)y) =

SN (E¢y)¥s. Equations (7.1) define a map for the variablgs v, @ = 1,..., N,

which is expected to be integrable since equations (7.1) are invariant with respect to the
action of all flows of the Toda hierarchy. We recall that the functipnsy,, have a dumb
index n which is usually suppressed in our notation. Equationsa(7/bl are invariant by

the definition of the hierarchy while (ZcLcan be seen as a stationarity condition

— 8Hyp1/Su — Y01 88, /Su )
0= BO<5Hm+1/5U - Ziv:lcgfr/&} (7.2)
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of a flow (also belonging to the hierarchy) which involves the square eigenfunctions and
the HamiltonianH,,,1. The mth restricted flow of the Toda hierarchy can now be seen as
the mth stationary flow of the Toda hierarchy with sources. It inherits from (6.5) the Lax
representation

= (B Au) (DA + U) — (DA + U)Ag) (7.3)
which becomes a similarity transformation @éf,,. Restricted flows are numbered by

=-1012,....
The m = 0 restriction for the Toda hierarchy reads

_ PL—(oy) '\ _ 0 (I - E Y u+a—(py)

since (u + a, 1 + bv™Y)' belongs to the kernel oBy. It yields u, = (¢,¥,) — a and
Uy = b[(¢ns1¥n) — 1171 wherea, b are constants of integration. The replicas of the spectral
problem (5.1) become the Garnier map (3.1).
By speC|fy|ngQ Pin (6.4) asQ = Y. 15 g P=1+Y" U(? with p@ =
o Vnas 49 = P+1a¥ne We get the following Lax matrices for the Garnier map:

A — Up —Un

and
A,_q = —Vp-10n-1 V1P 1
. —P —[0,Qu + (u, — M) P]
(" 1Y g (L4 0L, Geetne )
-1 - Z;\Izl % [Un 1 ZN ¢(n}fl)a‘/fna + (un _ )\') (l + ZN ¢}’z°‘7‘//;""):|

By using the spectral problem (Z)1 in the matrix element (22), the spectral problem
(7.1a) and by substituting definitions (3.5), (3.6) we get the Lax matrix (3.10). It is not
difficult to check that the discrete Lax equation (3.9) is now satisfied due to equations (3.7)
whenu, andv, are substituted from the restrictiony = (¢,v¥,,) — a = (g,r») — a and

Up—1 = b[(¢n+lwn) - 1]71(6]”1%) —-b
Them = —1 restriction

@)\ [ O (I—E-1>v>( V) )
0= B"( ((E¢>)w>> = (v(E iy 0 (E$)¥) (7.5)

yields (¢, ¥,) = ¢, v, = d(¢a41¥,)"* Wherec,d are constants of integration and the
restricted flow equations become the discrete Neumann map (4 1). By spedifyiAgn

)
(6 4) aSQ Za 1 )\_(g' P = Za 1 A Wlth p(a) = ¢na¢naa C],, = ¢(n+1)otwna we get

the Lax matrix (4.2) for the Neumann map (4.1).

8. Conclusions

We have given here only the first two maps following from the Toda hierarchy. One expects
that the next restricted flows of the Toda hierarghy= 1, 2, ...) should approximate the
corresponding restricted flowg = 2, 3, ...) of thekdv hierarchy. It would be particularly
interesting to derive an integrable map approximating the integrable case of the Henon—
Heiles system which is embedded into the= 3 stationarykdv flow [3, 11].

We have to mention here that different integrable maps are presently available in the
literature which are called Neumann and Garnier maps. Two of these have been derived
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by one of the authors [5, 13]. They have been derived as restricted flows of an alternative

version of the Toda hierarchy associated with the self-adjoint spectral problem. An integrable

discretization of the Neumann system has been presented by Moser and Veselov [12], while

recently Suris [14] has presented yet another integrable discretization of the Garnier system.

The models studied in [13, 14] are endowed with Lax representatiorRamdtrix structure.
Further properties of our models, like-matrix formulation, bi-Hamiltonian structure

and separation of variables are under study and the results will be published elsewhere.
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